This reminds me of how physicists will define a tensor. So a second rank tensor is the object that transforms according as second rank tensor when the basis (or coordinates) changes. You might find it circular reasoning but it is not, This transformation property is what distinguishes tensors (of any rank) from mere arrays of numbers.
Looking at things from abstract view does allow us not to worry about how we visualize the geometry which is actually hard and sometimes counter intuitive.
I found the physicist definition of a tensor is actually more confusing, because you are faced with these definitions how to transform these objects, but you never are really explained where does it all come from. While the mathematical definition through differential forms, co-vectors, while being longer actually explains these objects better.
I don't get why people act like this definition is so circular. If you were to explain in detail what "transforms as a second rank tensor" means then it wouldn't be circular anymore. This just isn't the full definition.
> You might find it circular reasoning but it is not
Um, yes it is. "A foo is an object that transforms as a foo" is a circular definition because it refers to the thing being defined in the definition. That is what "circular definition" means.
This is a tendency among physicists that I find a bit painful when reading their explanations: focusing on how things transform between coordinate systems rather than on the coordinate-independent things that are described by those coordinates. I get that these transformation properties are important for doing actual calculations, but I think they tend to obfuscate explanations.
In special relativity, for example, a huge amount of attention is typically given to the Lorenz transformations required when coordinates change. However, the (Minkowski) space that is the setting for special relativity is well defined without reference to any particular coordinate system, as an affine space with a particular (pseudo-)metric. It's not conceptually very complicated, and I never properly understood special relativity until I saw it explained in those terms in the amazing book Special Relativity in General Frames by Eric Gourgoulhon.
For tensors, the basis-independent notion is a multilinear map from a selection of vectors in a vector space and forms (covectors) in its dual space to a real number. The transformation properties drop out of that, and I find it much more comfortable mentally to have that basis-independent idea there, rather than just coordinate representations and transformations between them.