> Wasn't the philosophy back then to run multiple independent (and often even designed and manufactured by different teams) computers and run a quorum algorithm at a very high level?
It was, and they did (well, same design, but they were independent). I quote from the report:
"To provide redundancy, the ADIRS included three air data inertial reference units (ADIRU 1, ADIRU 2, and ADIRU 3). Each was of the same design, provided the same information, and operated independently of the other two"
> Maybe ECC was seen as redundant in that model?
I personally would not eschew any level of redundancy when it can improve safety, even in remote cases. It seems at the moment of the module's creation, EDAC was not required, and it probably was quite more expensive. The new variant apparently has EDAC. They retrofitted all units with the newer variants whenever one broke down. Overall, ECC is an extra layer of protection. The _presumably_ bit flip would be plausible to blame for data spikes. But even so, the data spikes should not have caused the controls issue. The controls issue is a separate problem, and it's highly likely THAT is what they are going to address, in another compute unit.
"There was a limitation in the algorithm used by the A330/A340 flight control primary computers for processing angle of attack (AOA) data. This limitation meant that, in a very specific situation, multiple AOA spikes from only one of the three air data inertial reference units could result in a nose-down elevator command. [Significant safety issue]"
This is most likely what they will address. The other reports confirm that the fix will be in the ELAC produced by Thales and the issue with the spikes detailed in the report was in an ADIRU module produced by Northrop Gruman.