logoalt Hacker News

Octoth0rpetoday at 6:56 PM2 repliesview on HN

Sure, assuming the power cost reduction or capability increase justifies the expenditure. It's not clear that that will be the case. That's one of the shaky assumptions I'm referring to. It may be that the 2030 nvidia accelerators will save you $2000 in electricity per month per rack, and you can upgrade the whole rack for the low, low price of $800,000! That may not be worth it at all. If it saves you $200k/per rack or unlocks some additional capability that a 2025 accelerator is incapable of and customers are willing to pay for, then that's a different story. There are a ton of assumptions in these scenarios, and his logic doesn't seem to justify the confidence level.


Replies

maxglutetoday at 9:04 PM

Demand/suppy economics is not so hypothetical.

Illustration numbers: AI demand premium = $150 hardware with $50 electricity. Normal demand = $50 hardware with $50 electricity. This is Nvidia margins @75% instead of 40%. CAPEX/OPEX is 70%/20% hardware/power instead of customary 50%/40%.

If bubble crashes, i.e. AI demand premium evaporates, we're back at $50 hardware and $50 electricity. Likely $50 hardware and $25 electricity if hardware improves. Nvdia back to 30-40% margins, operators on old hardware stuck with stranded assets.

The key thing to understand is current racks are sold at grossly inflated premiums right now, scarcity pricing/tax. If the current AI economic model doesn't work then fundmentally that premium goes away and subsequent build outs are going to be costplus/commodity pricing = capex discounted by non trivial amounts. Any breakthroughs in hardware, i.e. TPU compute efficiency would stack opex (power) savings. Maybe by year 8, first gen of data centers are still depreciated to $80 hardware + $50 power vs new center @ $50 hardware + $25 power. That old data center is a massive write-down because it will generate less revenue than it costs to amoritize.

trollbridgetoday at 7:15 PM

A typical data centre is $2,500 per year per kW load (including overhead, hvac and so on).

If it costs $800,000 to replace the whole rack, then that would pay off in a year if it reduces 320 kW of consumption. Back when we ran servers, we wouldn't assume 100% utilisation but AI workloads do do that; normal server loads would be 10kW per rack and AI is closer to 100. So yeah, it's not hard to imagine power savings of 3.2 racks being worth it.

show 1 reply