The kind of supersymmetry you’re referring to (global spacetime supersymmetry) is not required by string theory; this is a common misconception. Looking for super partners in a collider is actually only telling you about global supersymmetry, which unlike local supersymmetry is not a universal feature of string theory at low energy, in fact the opposite, it is probably non-generic. It so happens that a class of appealingly simple vacua do have this property, which led to some inappropriate optimism among string theorists that has entirely abated with more experiments. Unfortunately this has been widely misunderstood to rule out the whole enterprise of string theory, which is unreasonable for the reason stated above, it is much more likely to not see SUSY below the Planck scale. [0] (Unless you just like to mock string theorists for hoping that the universe would be kind to them.)
Also global supersymmetry has not been experimentally disproved (how would you do this, even?) but it is true that current or even near-term experiments are not nearly sensitive enough to get close enough to answering this definitively, which is obviously upsetting.
[0] https://ncatlab.org/nlab/show/string+theory+FAQ#DoesSTPredic...
Not intending to mock anyone and I don't know nearly enough physics to have a credible opinion either way. Thanks for your explanation.