CCDs can't access each other's L3 cache as their own (fabric penalty is too high to do that directly). Assuming it's anything like the 9174F that means it's really 8 groups of 2 cores that each have 64 MB of L3 cache. Still enormous, and you can still access data over the infinity fabric with penalties, but not quite a block of 512 MB of cache on a single 16 core block that it might sound like at first.
Zen 4 also had 96 MB per CCD variants like the 9184X, so 768 MB per, and they are dual socket so you can end up with a 1.5 GB of total L3 cache single machine! The downside being now beyond CCD<->CCD latencies you have socket<->socket latencies.
9684x is 1152 MB cache per socket, 12 CCDs * 96MB. A similar X series zen5 is planned.
Though I wish they did some chips with 128GB of high bandwidth dram instead of a extra sized sram caches.
Hmm. Ok, instead of treating the cache as ram, we will have to treat each CCD as a node, and treat the chip as a cluster. It will be hard, but you can fit quite a bit in 64MB.
It's actually 16 CCDs with a single core and 32MB each.