logoalt Hacker News

tsimionescu11/07/20240 repliesview on HN

The first one helps with physical attacks on the wire. Not a common issue that people worry about, since there are so many boxes in between that are easier to compromise that it's rarely a significant security increase if you know the wire is perfectly secure.

The second is just wrong. It is well known and proven that it's impossible to send information via quantum entanglement. It's true that there are some interpretations of QM where the wave function of the entangled pair collapses instantly the moment one side of the pair is measured. But there is no version of QM where manipulating one side of the pair has any effect whatsoever on the other, except for measurement collapsing the quantum superposition into a random classical state.

The best classical intuition for how entanglement works is that two entangled particles are like two gloves from a pair. If you put them in boxes and separate them, when someone opens a box and finds the left glove, they instantly find out that the other person has the right glove. The difference with quantum entanglement is simply that the universe only decides which glove is which when you open the box, before that they are both in a mix of the states. This makes statistical properties measurably different if you send many pairs of gloves and look at how many times certain things match.

But there really is nothing that you can do with a pair of entangled particles that you couldn't do with the pair of gloves.

I should note for completeness that, because of the different statistical properties, there is a way to send slightly more information using entangled pairs than you can with classical particles. I believe you can send 1.5 bits of information per particle, but I don't remember the exact number. This means that a quantum internet could have higher throughput at the same transmit power, which would have some relevance for very long distance wireless communication, such as communicating with a space probe.