Thank you!
Yes, absolutely!
1) You could use BemiDB to sync your Postgres data (e.g., partition time-series tables) to S3 in Iceberg format. Iceberg is essentially a "table" abstraction on top of columnar Parquet data files with a schema, history, etc.
2) If you don't need strong consistency and fine with delayed data (the main trade-off), you can use just BemiDB to query and visualize all data directly from S3. From a query perspective, it's like DuckDB that talks Postgres (wire protocol).
Feel free to give it a try! And although it's a new project, we plan to keep building and improving it based on user feedback.
Thanks!
- Can you give me more info about the strong consistency and delayed data, so I can better picture it with a few examples?
- Also, is it possible to do the sync with the columnar data in "more-or-less real-time" (eg do a NOTIFY on a new write in my IoT events table, and push in the storage?)
- Would your system also be suited for a kind of "audit-log" data? Eg. if I want to have some kind of audit-table of all the changes in my database, but only want to keep a few weeks worth at hand, and then push the rest on S3, or it doesn't make much sense with that kind of data?