I'm curious, what are you considering for stating that deuterium is not renewable? AFAIK there's an essentially limitless supply in the form of HDO in the oceans[1] and there are cost effective methods[2] to isolate it.
If you are able to say that there is a limitless amount of deuterium in the oceans, than you can say the same about the amount of uranium in the oceans, even if the amount of dissolved uranium is about one thousand times less.
Both the amounts of deuterium and of uranium in the solar system are finite and smaller than of the abundant elements. Moreover, the natural processes that create deuterium and uranium within a normal stellar system are slower than those that destroy them, so there is no chance of their quantities ever increasing.
Unlike using other chemical elements to make some stuff, using deuterium or uranium for producing energy destroys them without any means to regenerate them, so it is by definition a non-renewable process.
The hydrogen (protium) in the Sun is also non-renewable, but its quantity is enormous in comparison with the amount of deuterium existing on Earth (and the amount of energy that the Sun produces per proton is greater than the amount of energy that can be produced per deuteron).
Like deuterium is extracted from sea water, uranium can also be extracted from sea water, where it is one of the most abundant metals, except for the alkali metals and the alkaline earth metals. However the energy required for extracting uranium is significantly higher, due to its much lower concentration than deuterium (though deuterium is difficult to separate due to its similarity with the lighter isotope of hydrogen, while for the uranium ions much more efficient chemical reactions would be possible, which would bind uranium ions without being affected by the other dissolved ions).
If you are able to say that there is a limitless amount of deuterium in the oceans, than you can say the same about the amount of uranium in the oceans, even if the amount of dissolved uranium is about one thousand times less.
Both the amounts of deuterium and of uranium in the solar system are finite and smaller than of the abundant elements. Moreover, the natural processes that create deuterium and uranium within a normal stellar system are slower than those that destroy them, so there is no chance of their quantities ever increasing.
Unlike using other chemical elements to make some stuff, using deuterium or uranium for producing energy destroys them without any means to regenerate them, so it is by definition a non-renewable process.
The hydrogen (protium) in the Sun is also non-renewable, but its quantity is enormous in comparison with the amount of deuterium existing on Earth (and the amount of energy that the Sun produces per proton is greater than the amount of energy that can be produced per deuteron).
Like deuterium is extracted from sea water, uranium can also be extracted from sea water, where it is one of the most abundant metals, except for the alkali metals and the alkaline earth metals. However the energy required for extracting uranium is significantly higher, due to its much lower concentration than deuterium (though deuterium is difficult to separate due to its similarity with the lighter isotope of hydrogen, while for the uranium ions much more efficient chemical reactions would be possible, which would bind uranium ions without being affected by the other dissolved ions).