logoalt Hacker News

parsimo201011/07/20241 replyview on HN

RAG is a search step in an attempt to put relevant context into a prompt before performing inference. You are “augmenting” the prompt by “retrieving” information from a data set before giving it to an LLM to “generate” a response. The data set may be the internet, or a code base, or text files. The typical examples online uses an embedding model and a vector database for the search step, but doing a web query before inference is also RAG. Perplexity.ai is a RAG (but fairly good quality). I would argue that Codebuff’s directory tree search to find relevant files is a search step. It’s not the same as a similarity search on vector embeddings, and it’s not PageRank, but it is a search step.

Things that aren’t RAG, but are also ways to get a LLM to “know” things that it didn’t know prior:

1. Fine-tuning with your custom training data, since it modifies the model weights instead of adding context. 2. LoRA with your custom training data, since it adds a few layers on top of a foundation model. 3. Stuffing all your context into the prompt, since there is no search step being performed.


Replies

brandonchen11/07/2024

Gotcha – so broadly encompasses how we give external context to the LLM. Appreciate the extra note about vector databases, that's where I've heard this term used most, but I'm glad to know it extends beyond that. Thanks for explaining!