logoalt Hacker News

gdavisson11/08/20240 repliesview on HN

That's not correct; you cannot use a double-slit test to check for entanglement. Running a photon through a double-slit setup always just produces a single dot, not a any sort of pattern. To get a pattern, you need to run a bunch of photons through it and see if a fringe pattern appears [1].

(BTW, you never get a two-line pattern in a decent setup. This is an incredibly common mistake, but it's simply wrong. The interference (which produces fringes) only happens where the separate patterns from the two slits overlap, so if you want a lot of interference, you need them to overlap a lot. So in the no-interference case, you won't get two separate lines with a gap between, you'll get a single merged wash (with probably some fine structure due to diffraction within each of the slits, but that'll also be there when there is interference, on top of the two-slit interference fringes).)

You might think "ok, I'll do this with a bunch of photons, measure/not measure all of their twins, and see if the bunch of them show fringes." This is more-or-less what's done in the delayed-choice quantum eraser experiment, but it doesn't work out in a way that allows communication. What happens is that you always get the no-interference pattern. In order to see interference fringes, you need to split the individual photons' dots up based on the result of the measurement you made on their twins. Based on those measurements (if you made them), you can split the photons up into two groups, which'll have fringes with equal-and-opposite patterns (i.e. each will have bands where the other has gaps [2]).

If you didn't measure the twin photons (or made some other measurement on them instead), you can't split them up, so you won't see the fringes. But that's not because the measurements were different, it's just that you can't split them up afterward to see the fringes. And even if you did measure the twins, you can't split them up until you get a list of which twin got which result -- which can't be sent faster-than-light.

Net result: no, you can't send information via entanglement, you can only get correlation.

[1] https://www.researchgate.net/figure/Electron-Fringe-Pattern-...

[2] https://algassert.com/quantum/2016/01/07/Delayed-Choice-Quan...