> // Parallel bit count intermediates
> let a = v - ((v >> 1) & (u64::MAX / 3));
> let b = (a & (u64::MAX / 5)) + ((a >> 2) & (u64::MAX / 5));
> let c = (b + (b >> 4)) & (u64::MAX / 0x11);
> let d = (c + (c >> 8)) & (u64::MAX / 0x101);
That "parallel bit count" is almost certainly slower than using two POPCNT instructions on a modern cpu. Should just call __builtin_popcount() and let the compiler do it the most optimal way. Luckily, people do this sort of thing so often that many modern compilers will try (and often succeed) to detect you trying this insanity and convert it to a POPCOUNT (or a pair of POPCOUNTs as the case may be here)Which compilers support __builtin_popcount()? From memory, it's a gcc extension. If the compiler selects a CPU POPCOUNT instruction for it, are you sure it will work on all machines that you want to run it on?
The above code is completely source- and binary-portable and reasonably fast -- certainly faster than naively looping through the bits, and within a small constant factor of a CPU POPCOUNT instruction.
What that code does is a per-byte-pair popcount, which is not what the POPCNT instruction does (it computes the popcount for the whole word).
On processors with BMI2 the whole algorithm reduces to a PDEP as mentioned in another comment, but if you don't have that this is pretty much the best you can do (unless you use lookup tables but those have pros and cons).