logoalt Hacker News

JanisErdmanis12/09/20240 repliesview on HN

I actually thought the number of logical qubits needed was around 20 for factorisation as the state space size is 2^(2^n) and hence did not recognise them as the number of logical qubits required. It is often misunderstood that error correction needs to be done only once, as with classical quantum computers, and the numbers would fit together with one pass of error correction.

The Shor's algorithm requires binary encoding; hence, 2048 logical qubits are needed to become a nuance for cryptography. This, in turn, means that one will always be easily able to run away from a quantum adversary by paying a polynomial price on group element computations, whereas a classical adversary is exponentially bounded in computation time, and a quantum adversary is exponentially bounded with a number of physical qubits. Fascinating...