I always recommend Watrous's lecture notes: https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.pdf
I prefer his explanation to most other explanations because he starts, right away, with an analogy to ordinary probabilities. It's easy to understand how linear algebra is related to probability (a random combination of two outcomes is described by linearly combining them), so the fact that we represent random states by vectors is not surprising at all. His explanation of the Dirac bra-ket notation is also extremely well executed. My only quibble is that he doesn't introduce density matrices (which in my mind are the correct way to understand quantum states) until halfway through the notes.