The R1 GitHub repo is way more exciting than I had thought.
They aren't only open sourcing R1 as an advanced reasoning model. They are also introducing a pipeline to "teach" existing models how to reason and align with human preferences. [2] On top of that, they fine-tuned Llama and Qwen models that use this pipeline; and they are also open sourcing the fine-tuned models. [3]
This is *three separate announcements* bundled as one. There's a lot to digest here. Are there any AI practitioners, who could share more about these announcements?
[2] We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities. We believe the pipeline will benefit the industry by creating better models.
[3] Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
was genuinely excited when I read this but the github repo does not have any code.
Where are you seeing this? On https://github.com/deepseek-ai/DeepSeek-R1/tree/main?tab=rea... I only see the paper and related figures.