As soon as I read the title of this post, the anecdote about the Grothendieck prime came to mind. Sure enough, the article kicks off with that very story! The article also links to https://www.ams.org/notices/200410/fea-grothendieck-part2.pd... which has an account of this anecdote. But the article does not reproduce the anecdote as stated in the linked document. So allow me to share it here as I've always found it quite amusing:
> One striking characteristic of Grothendieck’s mode of thinking is that it seemed to rely so little on examples. This can be seen in the legend of the so-called “Grothendieck prime”. In a mathematical conversation, someone suggested to Grothendieck that they should consider a particular prime number. “You mean an actual number?” Grothendieck asked. The other person replied, yes, an actual prime number. Grothendieck suggested, “All right, take 57.”
But it's not prime - what am I missing? Why is this anecdote significant?
One of my pet hobbies is trying to figure out the least prime prime number and most prime composite numbers under 100.
My votes are 61 or 89 for least prime-seeming primes and 87 and --yep-- 57 for more prime-seeming composites.