I've built microscopes intended to be installed inside workcells similar to what companies like Transcriptic built (https://www.transcriptic.com/). So my scope could be automated by the workcell automation components (robot arms, motors, conveyors, etc).
When I demo'd my scope (which is similar to a 3d printer, using low-cost steppers and other hobbyist-grade components) the CEO gave me feedback which was very educational. They couldn't build a system that used my style of components because a failure due to a component would bring the whole system down and require an expensive service call (along with expensive downtime for the user). Instead, their mech engineer would select extremely high quality components that had a very low probability of failure to minimize service calls and other expensive outages.
Unfortunately, the cost curve for reliability not pretty, to reduce mechanical failures to close to zero costs close to infinity dollars.
One of the reasons Google's book scanning was so scalable was their choice to build fairly simple, cheap, easy to maintain machines, and then build a lot of them, and train the scanning individuals to work with those machines quirks. Just like their clusters, they tolerate a much higher failure rate and build all sorts of engineering solutions where other groups would just buy 1 expensive device with a service contract.
> They couldn't build a system that used my style of components because a failure due to a component would bring the whole system down and require an expensive service call
Could they not make the scope easily replaceable by the user and just supply a couple of spares?
Just thinking of how cars are complex machines but a huge variety of parts could be replaced by someone willing to spend a couple of hours learning how.
That’s similar to how Google won in distributed systems. They used cheap PCs in shipping containers when everyone else was buying huge expensive SUN etc servers.
This sounds like it could be centralised, a bit like the clouds in the IT world. A low failure rate of 1-3% is comparable to servers in a rack, but if you have thousands of them, then this is just a statistic and not a servicing issue. Several hyperscalers simply leave failed nodes where they are, it’s not worth the bother to service them!
Maybe the next startup idea is biochemistry as a service, centralised to a large lab facility with hundreds of each device, maintained by a dedicated team of on-site professionals.