I can really relate to this — in school, biology felt like dry memorization. It never clicked with me, and I wrote it off for years. If I could recommend one subtopic of biology to math and physic people, it would definitely be mycology!
It's like real-life Pokémon GO and field mycology has a "collect 'em all" vibe. You get out into nature, identify and catalog fungi — it scratches the same itch as exploring an open-world game.
Fungi are discrete, classifiable entities with tons of metadata: GPS location, substrate, time of year, morphology, spore prints, photos, microscopic features. Perfect for structured data nerds.
Unlike many branches of biology, you don’t need to go to the Amazon. You can walk into your backyard or a nearby forest and find species newly known for your country and sometimes even new for science.
Microscopes, macro lenses, chemicals, even DNA sequencing. There’s a hacker spirit in mycology.
Projects like iNaturalist, Mushroom Observer, and FungiMap are full of real scientific contributions from everyday people. The barrier to entry is low, the impact can be surprisingly high, and the community is genuinely welcoming. Many leading contributors — even those publishing in cutting-edge scientific journals — are passionate autodidacts rather than formally trained biologists.
High intra-species variance, subtle features — perfect playground for machine learning wich is not nearly "solved" here.
Cordyceps that zombify insects. Giant underground networks that share nutrients between trees. Bioluminescent mushrooms. Many weird stories.
Mycology is also becoming a computational frontier - projects like FungiNet use graph networks to map symbiotic relationships, and citizen science platforms generate massive datasets perfect for ML applications beyond just classification. The unsolved phylogenetic relationships and complex biochemical pathways of fungi represent some of the most interesting computational problems in modern biology.