> Computing large powers of large numbers is enormously unstable and needs to be avoided under basically all circumstances, that is what makes dealing with those polynomials difficult and cautioning people against this is obvious correct
But we don’t compute large powers of large numbers? Chebyshev is on [-1, 1]. Your large powers go to zero. And your coefficients almost always decrease as the degree goes up. Then to top it off, you usually compute the sum of your terms in descending order, so that the biggest ones are added last.
Could you please read the post before commenting?
"To be clear, I am not saying that this approximation does not work or that with appropriate scaling and the right polynomials these issues can't be mostly circumvented. Or that high degree polynomials "in general" are incalculable. I am saying that this article completely fails to say what the issue is and why the examples work."