My experiences somewhat confirm these observations, but I also had one that was different. Two weeks of debugging IPSEC issues with Gemini. Initially, I imported all the IPSEC documentation from OPNsense and pfSense into Gemini and informed it of the general context in which I was operating (in reference to 'keeping your context clean'). Then I added my initial settings for both sides (sensitive information redacted!). Afterwards, I entered a long feedback loop, posting logs and asking and answering questions.
At the end of the two weeks, I observed that: The LLM was much less likely to become distracted. Sometimes, I would dump whole forum threads or SO posts into it, when it said "this is not what we are seeing here, because of [earlier context or finding]. I eliminated all dead ends logically and informed it of this (yes, it can help with the reflection, but I had to make the decisions). In the end, I found the cause of my issues.
This somewhat confirms what some user here on HN said a few days ago. LLMs are good at compressing complex information into simple one, but not at expanding simple ideas into complex ones. As long as my input was larger than the output (either complexity or length), I was happy with the results.
I could have done this without the LLM. However, it was helpful in that it stored facts from the outset that I had either forgotten or been unable to retrieve quickly in new contexts. It also made it easier to identify time patterns in large log files, which helped me debug my site-to-site connection. I also optimized many other settings along the way, resolving not only the most problematic issue. This meant, in addition to fixing my problem, I learned quite a bit. The 'state' was only occasionally incorrect about my current parameter settings, but this was always easy to correct. This confirms what others already saw: If you know where you are going and treat it as a tool, it is helpful. However, don't try to offload decisions or let it direct you in the wrong direction.
Overall, 350k Tokens used (about 300k words). Here's a related blog post [1] with my overall path, but not directly corresponding to this specific issue. (please don't recommend wireguard; I am aware of it)
[1]: https://du.nkel.dev/blog/2021-11-19_pfsense_opnsense_ipsec_cgnat/
That's some impressive prompt engineering skills to keep it on track for that long, nice work! I'll have to try out some longer-form chats with Gemini and see what I get.
I totally agree that LLMs are great at compressing information; I've set up the docs feature in Cursor to index several entire large documentation websites for major libraries and it's able to distill relevant information very quickly.
Recently, Gemini helped me fix a bug in a PPP driver (Zephyr OS) without prior knowledge of PPP or even driver development really. I would copy-paste logs of raw PPP frames in HEX and it would just decode everything and explain the meaning of each bytes. In about an hour, I knew enough about PPP to fix the bug and submit a patch.
https://g.co/gemini/share/7edf8fa373fe