Hi. I object.
The trick#0 you mention is how I made an entire C dialect. Here is a generic binary heap, for example https://github.com/gritzko/librdx/blob/master/abc/HEAPx.h The syntax is a bit heavyweight, but a huge huge advantage is: you get regular C structs in the end, very plain, very predictable, very optimizable. Compiler would eat them like donuts.
In the other cases, it is void* and runtime memory sizing and you have to define macros anyway.
I agree, there are actually several reasons to prefer the header impl. Debugging is better, both because you can step through the header code where you can’t with a macro function, and because the type information available to the debugger is better. There are more opportunities for compiler optimizations because each instantiation is monomorphized and you don’t pay a runtime cost with variable sizing, generic structures can also be placed on the stack because of the fixed sizing.
There are workarounds for at least two of the problems the author mentions. Naming can be changed from Bar_func(args…) to func(Bar)(args…) with a function name macro that just does name mangling. You can avoid some of the binary bloat by using weak symbols, letting the linker deduplicate functions shared between translation units at link time.
There are other problems for generic containers of pointer types however, you can work around them by using a typedef or a type alias.
Intrusive data structures are more convenient in C still, but working with them in a debugger is a pain.
> Compiler would eat them like donuts.
Made me laugh out loud!
Author here. Binary heaps and linked lists are different use cases. A binary heap must read the data you put in it to store it correctly, but a linked list doesn't. If I were writing a generic binary heap, maybe I would weigh my options differently. I mentioned this in the footnotes.