logoalt Hacker News

jshortyyesterday at 9:41 PM1 replyview on HN

I have felt somewhat frustrated with what I perceive as a broad tendency to malign "prompt engineering" as an antiquated approach for whatever new the industry technique is with regards to building a request body for a model API. Whether that's RAG years ago, nuance in a model request's schema beyond simple text (tool calls, structured outputs, etc), or concepts of agentic knowledge and memory more recently.

While models were less powerful a couple of years ago, there was nothing stopping you at that time from taking a highly dynamic approach to what you asked of them as a "prompt engineer"; you were just more vulnerable to indeterminism in the contract with the models at each step.

Context windows have grown larger; you can fit more in now, push out the need for fine-tuning, and get more ambitious with what you dump in to help guide the LLM. But I'm not immediately sure what skill requirements fundamentally change here. You just have more resources at your disposal, and can care less about counting tokens.


Replies

simonwyesterday at 9:48 PM

I liked what Andrej Karpathy had to say about this:

https://twitter.com/karpathy/status/1937902205765607626

> [..] in every industrial-strength LLM app, context engineering is the delicate art and science of filling the context window with just the right information for the next step. Science because doing this right involves task descriptions and explanations, few shot examples, RAG, related (possibly multimodal) data, tools, state and history, compacting... Too little or of the wrong form and the LLM doesn't have the right context for optimal performance. Too much or too irrelevant and the LLM costs might go up and performance might come down. Doing this well is highly non-trivial. And art because of the guiding intuition around LLM psychology of people spirits.

show 1 reply