What about actively obtained data - models seeking data, rather than being fed. Human babies put things in their mouths, they try to stand and fall over. They “do stuff” to learn what works. Right now we’re just telling models what works.
What about simulation: models can make 3D objects so why not give them a physics simulator? We have amazing high fidelity (and low cost!) game engines that would be a great building block.
What about rumination: behind every Cursor rule for example, is a whole story of why a user added it. Why not take the rule, ask a reasoning model to hypothesize about why that rule was created, and add that rumination (along with the rule) to the training data. Providing opportunities to reflect on the choices made by their users might deepen any insights, squeezing more juice out of the data.
That would be reinforcement learning. The juice is quite hard to squeeze.
Simulation and embodied AI (putting the AI in a robotic arm or a car so it can try stuff and gather information about the results) are very actively being explored.