Of course. And I am not arguing against that at all. Just like if someone makes an inference runtime that is 4% faster, I'll take that win. But would it be the decisive factor in my choice? Only if that was my bottleneck, my true constraint.
All I tried to convey was that for most of the people in the presented scenario (personal emails etc.) , a 50 or even 500GB storage requirement is not going to be that primary constraint. So the suggestion was the marketing for this usecase might be better spotlighting also something else.
You are glossing over the fact that for RAG you need to search over those 500GB+ which will be painfully slow and CPU-intensive. The goal is fast retrieval to add data to the LLM context. Storage space is not the sole reason to minimize the DB size.