Yes and no. A problem with 8-bit and 16-bit for desktop and servers is the limited memory address space, so the compiler has to insert extra instructions to deal with things like updating the segment registers. And likewise if you need to do higher-bit math then the compiler again has to insert extra instructions. Those extra instructions clog up the pipeline, but aren't needed if your largest program's working memory set and the largest precision math you generally need fits within the ISA's bit size. Unless you are doing scientific computing or other large-memory set tasks like Blender (which dropped 32-bit support), then 32-bit really is good-enough.
I couldn't tell if your comment was a joke, but it is worth mentioning the 8-bit microcontrollers like TinyAVR still fill a niche where every joule and cent counts.
Yes and no. A problem with 8-bit and 16-bit for desktop and servers is the limited memory address space, so the compiler has to insert extra instructions to deal with things like updating the segment registers. And likewise if you need to do higher-bit math then the compiler again has to insert extra instructions. Those extra instructions clog up the pipeline, but aren't needed if your largest program's working memory set and the largest precision math you generally need fits within the ISA's bit size. Unless you are doing scientific computing or other large-memory set tasks like Blender (which dropped 32-bit support), then 32-bit really is good-enough.
I couldn't tell if your comment was a joke, but it is worth mentioning the 8-bit microcontrollers like TinyAVR still fill a niche where every joule and cent counts.