> However, making at home a useful microcontroller or FPGA would require not only an electron-beam lithography machine, but also a ion-implantation machine, a diffusion furnace, a plasma-etch machine, a sputtering machine and a lot of other chemical equipment and measurement instruments.
University nanofabs have all of these things today. https://cores.research.asu.edu/nanofab/
> but the cost would still be of many millions of $.
A single set of this equipment is only singular millions today commercially.
Using something like this for prototyping/characterization or small-scale analog tasks is where the real win is.
That ASU NanoFab has indeed almost everything that is needed.
It is weird that they do not have any ion implantation machine, because there are devices that are impossible to make without it. Even for simple MOS transistors, I am not aware of any other method for controlling the threshold voltage with enough precision. Perhaps whenever they need ion implantation they send the wafers to an external fab, with which they have a contract, to be done there.
Still, I find it hard to believe that all the equipment that they have costs less than 10 million $, unless it is bought second hand. There is indeed a market for slightly obsolete semiconductor manufacturing equipment, which has been replaced in some first tier fabs and now it is available at significant discounts for those who are content with it.