> Think of the possibilities!
Schulman’s Unauthorized Windows 95 describes a particularly unhinged one: in the hypervisor of Windows/386 (and subsequently 386 Enhanced Mode in Windows 3.0 and 3.1, as well as the only available mode in 3.11, 95, 98, and Me), a driver could dynamically register upcalls for real-mode guests (within reason), all without either exerting control over the guest’s memory map or forcing the guest to do anything except a simple CALL to access it. The secret was that all the far addresses returned by the registration API referred to the exact same byte in memory, a protected-mode-only instruction whose attempted execution would trap into the hypervisor, and the trap handler would determine which upcall was meant by which of the redundant encodings was used.
And if that’s not unhinged enough for you: the boot code tried to locate the chosen instruction inside the firmware ROM, because that will have to be mapped into the guest memory map anyway. It did have a fallback if that did not work out, but it usually succeeded. This time, the secret (the knowledge of which will not make you happier, this is your final warning) is that the instruction chosen was ARPL, and the encoding of ARPL r/m16, AX starts with 63 hex, also known as the ASCII code of the lowercase letter C. The absolute madmen put the upcall entry point inside the BIOS copyright string.
(Incidentally, the ARPL instruction, “adjust requested privilege level”, is very specific to the 286’s weird don’t-call-it-capability-based segmented architecture... But it’s has a certain cunning to it, like CPU-enforced __user tagging of unprivileged addresses at runtime.)
> The absolute madmen put the upcall entry point inside the BIOS copyright string.
Isn’t that an arbitrary string, though? Presumably AMI and Insyde have different copyright messages, so then what?