> In general, neither can ensure at compile time that an index only known at runtime is in bounds, even if the bounds themselves are statically known.
Yeah, this seems like matrixes might not be a great first example for explaining the value of dependent types. It's fully possible to define a matrix that uses a generic type as the index for each dimension that doesn't allow expressing values outside the expected range; it would just be fairly cumbersome, and the usual issues would creep back in if you needed to go from "normal" integers back to indexes (although not if you only needed to convert the indexes to normal integers).
I find that the potential utility of dependent types is more clear when thinking about types where the "dimensions" are mutable, which isn't usually how I'd expect most people to use matrixes. Even a simple example like "the current length of a list can be part of the type, so you define a method to get the first element only on non-empty lists rather than needing them to return an optional value". While you could sort of implement this in a similar as described above with a custom integer-like type, the limitations of this kind of approach for a theoretically unbounded length are a lot more apparent than a matrix with constant-sized dimensions.
The advantage of dependent typing systems is that you can say that the arguments to a matrix multiplication function must have dimensions (m, i) and (i, n) and that result will have dimensions (m, n).