This feels too linear. Machines are great at ingesting huge volumes of data, following relatively simple rules and producing optimized output, but are LLMs sufficiently better than humans at finding windy, multi-step connections across seemingly unrelated topics & fields? Have they shown any penchant for novel conclusions from observational science? What I think your ratio misses is the value in making the targeted extrapolation or hypothesis that holds up out of a giant body of knowledge.
Are you aware of anything novel, produced by an LLM?