logoalt Hacker News

1980phipsitoday at 3:52 PM8 repliesview on HN

> It is also important to note that, until recently, the GenAI industry’s focus has largely been on training workloads. In training workloads, CUDA is very important, but when it comes to inference, even reasoning inference, CUDA is not that important, so the chances of expanding the TPU footprint in inference are much higher than those in training (although TPUs do really well in training as well – Gemini 3 the prime example).

Does anyone have a sense of why CUDA is more important for training than inference?


Replies

augment_metoday at 8:13 PM

NVIDIA chips are more versatile. During training, you might need to schedule things to the SFU(Special Function unit that does sin, cos, 1/sqrt(x), etc), you might need to run epilogues, save intermediary computations, save gradients, etc. When you train, you might need to collect data from various GPUs, so you need to support interconnects, remote SMEM writing, etc.

Once you have trained, you have frozen weights/feed-forward networks that consist out of frozen weights that you can just program in and run data over. These weights can be duplicated across any amount of devices and just sit there and run inference with new data.

If this turns out to be the future use-case for NNs(it is today), then Google are better set.

show 1 reply
rbanffytoday at 7:58 PM

This is a very important point - the market for training chips might be a bubble, but the market for inference is much, much larger. At some point we might have good enough models and the need for new frontier models will cool down. The big power-hungry datacenters we are seeing are mostly geared towards training, while inference-only systems are much simpler and power efficient.

A real shame, BTW, all that silicon doesn't do FP32 (very well). After training ceases to be that needed, we could use all that number crunching for climate models and weather prediction.

johnebgdtoday at 3:57 PM

I think it’s the same reason windows is inportant to desktop computers. Software was written to depend on it. Same with most of the software out there today to train being built around CUDA. Even a version difference of CUDA can break things.

Trastertoday at 7:19 PM

Training is taking an enormous problem and trying to break it into lots of pieces and managing the data dependency between those pieces. It's solving 1 really hard problem. Inference is the opposite, it's lots of small independent problems. All of this "we have X many widgets connected to Y many high bandwidth optical telescopes" is all a training problem that they need to solve. Inference is "I have 20 tokens and I want to throw them at these 5,000,000 matrix multiplies, oh and I don't care about latency".

llm_nerdtoday at 4:02 PM

It's just more common as a legacy artifact from when nvidia was basically the only option available. Many shops are designing models and functions, and then training and iterating on nvidia hardware, but once you have a trained model it's largely fungible. See how Anthropic moved their models from nvidia hardware to Inferentia to XLA on Google TPUs.

Further it's worth noting that the Ironwood, Google's v7 TPU, supports only up to BF16 (a 16-bit floating point that has the range of FP32 minus the precision. Many training processes rely upon larger types, quantizing later, so this breaks a lot of assumptions. Yet Google surprised and actually training Gemini 3 with just that type, so I think a lot of people are reconsidering assumptions.

show 1 reply
baby_souffletoday at 3:59 PM

That quote left me with the same question. Something about decent amount of ram on one board perhaps? That’s advantageous for training but less so for inference?

imtringuedtoday at 4:28 PM

When training a neural network, you usually play around with the architecture and need as much flexibility as possible. You need to support a large set of operations.

Another factor is that training is always done with batches. Inference batching depends on the number of concurrent users. This means training tends to be compute bound where supporting the latest data types is critical, whereas inference speeds are often bottlenecked by memory which does not lend itself to product differentiation. If you put the same memory into your chip as your competitor, the difference is going to be way smaller.

NaomiLehmantoday at 3:58 PM

inference is often a static, bounded problem solvable by generic compilers. training requires the mature ecosystem and numerical stability of cuda to handle mixed-precision operations. unless you rewrite the software from the ground up like Google but for most companies it's cheaper and faster to buy NVIDIA hardware

show 1 reply