Not sure why this is downvoted. The comment cuts to the core of the "Intelligence vs. Curve-Fitting" debate. From my humble perspective as a PhD in the molecular biology /biophysics field you are fundamentally correct: AlphaFold is optimization (curve-fitting), not thinking. But calling it "propaganda" might be a slight oversimplification of why that optimization is useful. If you ask AlphaFold to predict a protein that violates the laws of physics (e.g. a designed sequence with impossible steric clashes), it will sometimes still confidently predict a folded structure because it is optimizing for "looking like a protein", not for "obeying physics". The "Propaganda" label likely comes from DeepMind's marketing, which uses words like "Solved"; instead, DeepMind found a way to bypass the protein folding problem.
I think if you watch the actual film you'd find they don't claim AlphaFold is thinking.
I'm concerned that coders and the general public will confuse optimization with intelligence. That's the nature of propaganda, substituting sleight of hand to create a false narrative.
btw an excellent explanation, thank you.
If there's one thing I wish DeepMind did less of, it's conflating the protein folding problem with static structure prediction. The former is a grand challenge problem that remains 'unsolved' while the latter is an impressive achievment that really is optimization using a huge collection of prior knowledge. I've told John Moult, the organizer of CASP this (I used to "compete" in these things), and I think most people know he's overstating the significance of static structure prediction.
Also, solving the protein folding problem (or getting to 100% accuracy on structure prediction) would not really move the needle in terms of curing diseases. These sorts of simplifications are great if you're trying to inspire students into a field of science, but get in the way when you are actually trying to rationally allocate a research budget for drug discovery.