logoalt Hacker News

voidhorsetoday at 2:31 PM0 repliesview on HN

As someone who has always struggled with mathematics at the calculational level, but who really enjoys theorems and proofs (abstract mathematics), here are some things that help me.

1. Study predicate logic, then study it again, and again, and again. The better and more ingrained predicate logic becomes in your brain the easier mathematics becomes.

2. Once you become comfortable with predicate logic, look into set theory and model theory and understand both of these well. Understand the precise definition of "theory" wrt to model theory. If you do this, you'll have learned the rules that unify nearly all of mathematics and you'll also understand how to "plug" models into theories to try and better understand them.

3. Close reading. If you've ever played magic the gathering, mathematics is the same thing--words are defined and used in the same way in which they are in games. You need to suspend all the temptation to read in meanings that aren't there. You need to read slowly. I've often only come upon a key insight about a particular object and an accurate understanding only after rereading a passage like 50 times. If the author didn't make a certain statement, they didn't make that statement, even if it seems "obvious" you need to follow the logical chain of reasoning to make sure.

4. Translate into natural english. A lot of math books will have whole sections of proofs and /or exercises with little to no corresponding natural language "explainer" of the symbolic statements. One thing that helps me tremendously is to try and frame any proof or theorem or collection of these in terms of the linguistic names for various definitions etc. and to try and summarize a body of proofs into helpful statements. For example "groups are all about inverses and how they allow us to "reverse" compositions of (associative) operations--this is the essence of "solvability"". This summary statement about groups helps set up a framing for me whenever I go and read a proof involving groups. The framing helps tremendously because it can serve as a foil too—i.e. if some surprising theorem contravene's the summary "oh, maybe groups aren't just about inversions" that allows for an intellectual development and expansion that I find more intuitive. I sometimes think of myself as a scientist examining a world of abstract creatures (the various models (individuals) of a particular theory (species))

5. Contextualize. Nearly all of mathematics grew out of certain lines of investigation, and often out of concrete technical needs. Understanding this history is a surprisingly effective way to make many initially mysterious aspects of a theory more obvious, more concrete, and more related to other bits of knowledge about the world, which really helps bolster understanding.