Ehh.
Everything you need to consider is really not that much when it comes to most typical consumer 3d printing projects. Mostly because they are usually about stuff like "fixing a broken tashcan". The engineers who made that bullshit plastic part that broke after a year probably knew all about area moment of inertia, but that doesn't mean I need to to print a replacement part that lasts longer - or not, in which case I'll just iterate on my process.
I really don't get the dismissiveness, and frankly, I've never experienced that from engineers in my life. They just seem delighted when someone, kid or adult, tinkes with additive manufacturing.
Hmm, I suppose the analogy could be interpreted as dismissive, which is not my intent.
I think both vibe coding and 3D printing are wonderful things. Lowering the barrier to entry and increasing technology accessibility allows those without formal training to create incredibly capable things that were previously difficult or not possible to do.
What I meant to specifically highlight is the 3D printing of functional parts that have some level of impact on safety, things that can lead to significant property damage, harm, or loss of life. Common examples include 3D printed car parts (so many) and load bearing components in all sorts of applications (bike mounts, TV mounts, brackets, I even saw a ceiling mounted pull-up bar once).
This isn't to say it can't or shouldn't be done. What I'm saying is that both on the digital side (files for personal use) and the production/sale side (selling finished parts), there is no guarantee of engineering due diligence. 3D printers enable low volume small businesses to exist, but it also means that, purposefully or not, their size means they can go quite a while without running into safety regulations and standards meant to keep people safe.