Even on Linux with overcommit you can have allocations fail, in practical scenarios.
You can impose limits per process/cgroup. In server environments it doesn't make sense to run off swap (the perf hit can be so large that everything times out and it's indistinguishable from being offline), so you can set limits proportional to physical RAM, and see processes OOM before the whole system needs to resort to OOMKiller. Processes that don't fork and don't do clever things with virtual mem don't overcommit much, and large-enough allocations can fail for real, at page mapping time, not when faulting.
Additionally, soft limits like https://lib.rs/cap make it possible to reliably observe OOM in Rust on every OS. This is very useful for limiting memory usage of a process before it becomes a system-wide problem, and a good extra defense in case some unreasonably large allocation sneaks past application-specific limits.
These "impossible" things happen regularly in the services I worked on. The hardest part about handling them has been Rust's libstd sabotaging it and giving up before even trying. Handling of OOM works well enough to be useful where Rust's libstd doesn't get in the way.
Rust is the problem here.