logoalt Hacker News

wistylast Monday at 2:45 PM1 replyview on HN

Sorry, double reply, I reread your comment and realised you probably know what you're talking about.

Yeah, at its heart it's basically text compression. But the best way to compression, say, Wikipedia would be to know how the world works, at least according to the authors. As the recent popular "bag of words" post says:

> Here’s one way to think about it: if there had been enough text to train an LLM in 1600, would it have scooped Galileo? My guess is no. Ask that early modern ChatGPT whether the Earth moves and it will helpfully tell you that experts have considered the possibility and ruled it out. And that’s by design. If it had started claiming that our planet is zooming through space at 67,000mph, its dutiful human trainers would have punished it: “Bad computer!! Stop hallucinating!!”

So it needs to know facts, albeit the currently accepted ones. Knowing the facts is a good way to compression data.

And as the author (grudgingly) admits, even if it's smart enough to know better, it will still be trained or fine tuned to tell us what we want to hear.

I'd go a step further - the end point is an AI that knows the currently accepted facts, and can internally reason about how many of them (subject to available evidence) are wrong, but will still tell us what we want to hear.

At some point maybe some researcher will find a secret internal "don't tell the stupid humans this" weight, flip it, and find out all the things the AI knows we don't want to hear, that would be funny (or maybe not).


Replies

HarHarVeryFunnylast Monday at 3:24 PM

> So it needs to know facts, albeit the currently accepted ones. Knowing the facts is a good way to compression data.

It's not a compression engine - it's just a statistical predictor.

Would it do better if it was incentivized to compress (i.e training loss rewarded compression as well as penalizing next-word errors)? I doubt it would make a lot of difference - presumably it'd end up throwing away the less frequently occurring "outlier" data in favor of keeping what was more common, but that would result in it throwing away the rare expert opinion in favor of retaining the incorrect vox pop.