Respectfully, this has become a message board canard. Go is absolutely a memory safe language. The problem is that "memory safe", in its most common usage, is a term of art, meaning "resilient against memory corruption exploits stemming from bounds checking, pointer provenance, uninitialized variables, type confusion and memory lifecycle issues". To say that Go isn't memory safe under that definition is a "big if true" claim, as it implies that many other mainstream languages commonly regarded as memory safe aren't.
Since "safety" is an encompassing term, it's easy to find more rigorous definitions of the term that Go would flunk; for instance, it relies on explicit synchronization for shared memory variables. People aren't wrong for calling out that other languages have stronger correctness stories, especially regarding concurrency. But they are wrong for extending those claims to "Go isn't memory safe".
I’m not aware of any definition of memory safety that allows for segfaults- by definition those are an indication of not being memory safe.
It is true that go is only memory unsafe in a specific scenario, but such things aren’t possible in true memory safe languages like c# or Java. That it only occurs in multithreaded scenarios matters little especially since concurrency is a huge selling point of the language and baked in.
Java can have data races, but those data races cannot be directly exploited into memory safety issues like you can with Go. I’m tired of Go fans treating memory safety as some continuum just because there are many specific classes of how memory safety can be violated and Go protecting against most is somehow the same as protecting against all (which is what being a memory safe language means whether you like it or not).
I’m not aware of any other major language claiming memory safety that is susceptible to segfaults.
https://www.ralfj.de/blog/2025/07/24/memory-safety.html