Why compilers are hard – the IR data structure
If you claim an IR makes things harder, just skip it.
Compilers do have an essential complexity that makes them "hard" [...waffle waffle waffle...]
The primary data [...waffle...] represents the computation that the compiler needs to preserve all the way to the output program. This data structure is usually called an IR (intermediate representation). The primary way that compilers work is by taking an IR that represents the input program, and applying a series of small transformations all of which have been individually verified to not change the meaning of the program (i.e. not miscompile). In doing so, we decompose one large translation problem into many smaller ones, making it manageable.
There we go. The section header should be updated to:
Why compilers are manageable – the IR data structure
In the D compiler, I realized that while loops could be rewritten as for loops, and so implemented that. The for loops are then rewritten using goto's. This makes the IR a list of expression trees connected by goto's. This data structure makes Data Flow Analysis fairly simple.
An early function inliner I implemented by inlining the IR. When I wrote the D front end, I attempted to do this in the front end. This turned out to be a significantly more complicated problem, and in the end not worth it.
The difficulty with the IR versions is, for error messages, it is impractical to try and issue error messages in the context of the original parse trees. I.e. it's the ancient "turn the hamburger into a cow" problem.