While cancer is caused by mutations in the genome, these mutations in turn produce the unifying property of cancer: unchecked cell replication.
Most cell types have systems to safely manage replication. Broadly, there are gas pedals (oncogenes) and brakes (tumor suppressors). A classic oncogene is something like RAS, which activates a signaling cascacde and stimulates progression through the cell cycle. A canonical tumor suppressor is something like TP53, the most frequently mutated gene in cancer, which senses various cellular stresses and induces apoptosis or senescence.
Most cancer genomes are more complicated than individual point mutations (SNPs), insertions, or deletions. There are copy number alterations, where you have > or < 2 copies of a genomic region or chromosome, large scale genomic rearrangements, metabolism changes, and extrachromosomal DNA. There is a series on the hallmarks of cancer which is a useful overview [1].
All of the mechanisms that intrinsically regulate cell growth would fall under your "L1 defense". Unfortunately, the idea of reversing somatic point mutations is likely to be a challenging approach to treating cancer given the current state of technology.
First, for the reasons above, cancer is often multifactorial and it would be difficult to identify a single driver that would effectively cure the disease if corrected. Second, we don't have currently delivery or in vivo base editing technology that is sensitive or specific enough to cure cancer by this means. There are gene therapies like zolgensma[2] which act to introduce a working episomal (not replacing the damaged version in the genome) copy of the gene responsible for SMA. There are also in vivo cell therapies like CAR T which attempt to introduce a transgene that encodes for an anti-cancer effector on T cells. These sorts of approaches may give some insight into the current state of art in this field.
Edit: also I should note that the genes involved in DNA repair (PARP, BRACA1/2, MSH2, MLH1, etc) are frequently mutated in cancers and therapeutically relevant. There are drugs that target them, sometimes rather successfully (e.g. PARP inhibitors). But the mechanisms of action for these therapies are more complicated than outright correcting the somatic mutations.
1. https://aacrjournals.org/cancerdiscovery/article/12/1/31/675... 2. https://en.wikipedia.org/wiki/Onasemnogene_abeparvovec