logoalt Hacker News

less_lesslast Thursday at 12:27 PM0 repliesview on HN

Another answer to this: https://en.wikipedia.org/wiki/Cayley–Bacharach_theorem

A second special case of this theorem is Pascal's theorem, which says (roughly) that a variant of the elliptic curve group law also works on the union of a conic C and a line L (this union, like an elliptic curve, is cubic), where the group elements are on the conic. One point O on the conic is marked as the identity. To add points A+B, you draw a line AB between them, intersect that with the fixed line L in a point C, draw a second line CO back through the marked identity point, and intersect again with the conic in D:=A+B. This procedure obviously commutes and satisfies the identity law, and according to Pascal's theorem it associates.

Under a projective transformation, if the conic and line don't intersect, you can send the line to infinity and the conic to the units in (IIRC) a quadratic extension of F (e.g. the complex unit circle, if -1 isn't square in F). Since the group structure is defined by intersections of lines and conics, projective transformations don't change it. So the group is isomorphic to the group of units in an extension of F. If they do intersect ... not sure, but I would guess it instead becomes the multiplicative group in F itself.

The multiplicative group of F can be used for cryptography (this is classic Diffie-Hellman), as can the group of units in an extension field (this is LUCDIF, or in the 6th-degree case it's called XTR). These methods are slightly simpler than elliptic curves, but there are subexponential "index calculus" attacks against them, just like the ones against the original Diffie-Hellman. The attack on extension fields got a lot stronger with Joux's 2013 improvements. Since no such attack is known against properly chosen elliptic curves, those are used instead.