This essay frequently uses the word "insight", and its primary topic is whether an empirically fitted statistical model can provide that (with Norvig arguing for yes, in my opinion convincingly). How does that differ from your concept of a "cause"?
> I agree that it can be difficult to make sense of a model containing billions of parameters. Certainly a human can't understand such a model by inspecting the values of each parameter individually. But one can gain insight by examing (sic) the properties of the model—where it succeeds and fails, how well it learns as a function of data, etc.
Unfortunately, studying the behavior of a system doesn't necessarily provide insight into why it behaves that way; it may not even provide a good predictive model.
> I agree that it can be difficult to make sense of a model containing billions of parameters. Certainly a human can't understand such a model by inspecting the values of each parameter individually. But one can gain insight by examing (sic) the properties of the model—where it succeeds and fails, how well it learns as a function of data, etc.
Unfortunately, studying the behavior of a system doesn't necessarily provide insight into why it behaves that way; it may not even provide a good predictive model.