I think you are confusing network layers and their functionality.
"CSMA is no longer necessary on Ethernet today because all modern connections are point-to-point with only two "hosts" per channel."
Ethernet really isn't ptp. You will have a switch at home (perhaps in your router) with more than two ports on it. At layer 1 or 2 how do you mediate your traffic, without CSMA? Take a single switch with n ports on it, where n>2. How do you mediate ethernet traffic without CSMA - its how the actual electrical signals are mediated?
"Ethernet connections have both ends both transmitting and receiving AT THE SAME TIME ON THE SAME WIRES."
That's full duplex as opposed to half duplex.
Nagle's algo has nothing to do with all that messy layer 1/2 stuff but is at the TCP layer and is an attempt to batch small packets into fewer larger ones for a small gain in efficiency. It is one of many optimisations at the TCP layer, such as Jumbo Frames and mini Jumbo Frames and much more.
It's P2P as far as the physical layer (L1) is concerned.
Usually, full duplex requires two separate channels. The introduction of a hybrid on each end allows the use of the same channel at the same time.
Some progress has been made in doing the same thing with radio links, but it's harder.
Nagle's algorithm is somewhat intertwined with the backoff timer in the sense that it prevents transmitting a packet until some condition is met. IIRC, setting the TCP_NODELAY flag will also disable the backoff timer, at least this is true in the case of TCP/IP over AX25.
In modern ethernet, there is also flow-control via the PAUSE frame. This is not for collisions at the media level, but you might think of it as preventing collisions at the buffer level. It allows the receiver to inform the sender to slow down, rather than just dropping frames when its buffers are full.
> You will have a switch at home (perhaps in your router) with more than two ports on it. At layer 1 or 2 how do you mediate your traffic, without CSMA? Take a single switch with n ports on it, where n>2. How do you mediate ethernet traffic without CSMA - its how the actual electrical signals are mediated?
CSMA/CD is specifically for a shared medium (shared collision domain in Ethernet terminology), putting a switch in it makes every port its own collision domain that are (in practice these days) always point-to-point. Especially for gigabit Ethernet, there was some info in the spec allowing for half-duplex operation with hubs but it was basically abandoned.
As others have said, different mechanisms are used to manage trying to send more data than a switch port can handle but not CSMA (because it's not doing any of it using Carrier Sense, and it's technically not Multiple Access on the individual segment, so CSMA isn't the mechanism being used).
> That's full duplex as opposed to half duplex.
No actually they're talking about something more complex, 100Mbps Ethernet had full duplex with separate transmit and receive pairs, but with 1000Base-T (and 10GBase-T etc.) the four pairs all simultaneously transmit and receive 250 Mbps (to add up to 1Gbps in each direction). Not that it's really relevant to the discussion but it is really cool and much more interesting than just being full duplex.