To be fair, this is with debug symbols. Debug builds of Chrome were in the 5GB range several years ago; no doubt that’s increased since then. I can remember my poor laptop literally running out of RAM during the linking phase due to the sheer size of the object files being linked.
Why are debug symbols so big? For C++, they’ll include detailed type information for every instantiation of every type everywhere in your program, including the types of every field (recursively), method signatures, etc. etc., along with the types and locations of local variables in every method (updated on every spill and move), line number data, etc. etc. for every specialization of every function. This produces a lot of data even for “moderate”-sized projects.
Worse: for C++, you don’t win much through dynamic linking because dynamically linking C++ libraries sucks so hard. Templates defined in header files can’t easily be put in shared libraries; ABI variations mean that dynamic libraries generally have to be updated in sync; and duplication across modules is bound to happen (thanks to inlined functions and templates). A single “stuck” or outdated .so might completely break a deployment too, which is a much worse situation than deploying a single binary (either you get a new version or an old one, not a broken service).
I’ve seen LLVM dependent builds hit well over 30GB. At that point it started breaking several package managers.
I've hit the same thing in Rust, probably for the same reasons.
Isn't the simple solution to use detached debug files?
I think Windows and Linux both support them. That's how phones like Android and iOS get useful crash reports out of small binaries, they just upload the stack trace and some service like Sentry translates that back into source line numbers. (It's easy to do manually too)
I'm surprised the author didn't mention it first. A 25 GB exe might be 1 GB of code and 24 GB of debug crud.
Can't debug symbols be shipped as separate files?