logoalt Hacker News

adrian_btoday at 3:19 PM6 repliesview on HN

It should be noted that the number e = 2.71828 ... does not have any importance in practice, its value just satisfies the curiosity to know it, but there is no need to use it in any application.

The transcendental number whose value matters (being the second most important transcendental number after 2*pi = 6.283 ...) is ln 2 = 0.693 ... (and the value of its inverse log2(e), in order to avoid divisions).

Also for pi, there is no need to ever use it in computer applications, using only 2*pi everywhere is much simpler and 2*pi is the most important transcendental number, not pi.


Replies

jcranmertoday at 6:24 PM

It took me quite a bit to figure out what you're trying to say here.

The importance of e is that it's the natural base of exponents and logarithms, the one that makes an otherwise constant factor disappear. If you're using a different base b, you generally need to adjust by exp(b) or ln(b), neither of which requires computing or using e itself (instead requiring a function call that's using minimax-generated polynomial coefficients for approximation).

The importance of π or 2π is that the natural periodicity of trigonometric functions is 2π or π (for tan/cot). If you're using a different period, you consequently need to multiply or divide by 2π, which means you actually have to use the value of the constant, as opposed to calling a library function with the constant itself.

Nevertheless, I would say that despite the fact that you would directly use e only relatively rarely, it is still the more important constant.

d-us-vbtoday at 4:00 PM

This comment is quite strange to me. e is the base of the natural logarithm. so ln 2 is actually log_e (2). If we take the natural log of 2, we are literally using its value as the base of a logarithm.

Does a number not matter "in practice" even if it's used to compute a more commonly use constant? Very odd framing.

BigTTYGothGFtoday at 6:01 PM

What an odd thing to say. I find that it shows up all the time (and don't find myself using 2pi any more than pi).

qnleightoday at 4:45 PM

Uuuuuum no?

e^(ix) = cos(x) + isin(x). In particular e^(ipi) = -1

(1 + 1/n)^n = e. This is part of what makes e such a uniquely useful exponent base.

Not applied enough? What about:

d/dx e^x = e^x. This makes e show up in the solutions of all kinds of differential equations, which are used in physics, engineering, chemistry...

The Fourier transform is defined as integral e^(iomega*t) f(t) dt.

And you can't just get rid of e by changing base, because you would have to use log base e to do so.

Edit: how do you escape equations here? Lots of the text in my comment is getting formatted as italics.

show 3 replies
lutusptoday at 5:07 PM

> It should be noted that the number e = 2.71828 ... does not have any importance in practice, its value just satisfies the curiosity to know it, but there is no need to use it in any application.

In calculations like compound financial interest, radioactive decay and population growth (and many others), e is either applied directly or derived implicitly.

> ... 2*pi is the most important transcendental number, not pi.

Gotta agree with this one.

constantcryingtoday at 6:27 PM

>but there is no need to use it in any application.

Applications such as planes flying, sending data through wires, medical imaging (or any of a million different direct applications) do not count, I assume?

Your naivety about what makes the world function is not an argument for something being useless. The number appearing in one of the most important algorithms should give you a hint about how relevant it is https://en.wikipedia.org/wiki/Fast_Fourier_transform