logoalt Hacker News

aw1621107last Thursday at 4:15 AM3 repliesview on HN

> It is worth noting that the class of bugs described here (logic errors in highly concurrent state machines, incorrect hardware assumptions)

While the bugs you describe are indeed things that aren't directly addressed by Rust's borrow checker, I think the article covers more ground than your comment implies.

For example, a significant portion (most?) of the article is simply analyzing the gathered data, like grouping bugs by subsystem:

    Subsystem        Bug Count  Avg Lifetime
    drivers/can      446        4.2 years
    networking/sctp  279        4.0 years
    networking/ipv4  1,661      3.6 years
    usb              2,505      3.5 years
    tty              1,033      3.5 years
    netfilter        1,181      2.9 years
    networking       6,079      2.9 years
    memory           2,459      1.8 years
    gpu              5,212      1.4 years
    bpf              959        1.1 years

Or by type:

    Bug Type         Count  Avg Lifetime  Median
    race-condition   1,188  5.1 years     2.6 years
    integer-overflow 298    3.9 years     2.2 years
    use-after-free   2,963  3.2 years     1.4 years
    memory-leak      2,846  3.1 years     1.4 years
    buffer-overflow  399    3.1 years     1.5 years
    refcount         2,209  2.8 years     1.3 years
    null-deref       4,931  2.2 years     0.7 years
    deadlock         1,683  2.2 years     0.8 years
And the section describing common patterns for long-lived bugs (10+ years) lists the following:

> 1. Reference counting errors

> 2. Missing NULL checks after dereference

> 3. Integer overflow in size calculations

> 4. Race conditions in state machines

All of which cover more ground than listed in your comment.

Furthermore, the 19-year-old bug case study is a refcounting error not related to highly concurrent state machines or hardware assumptions.


Replies

johncolanduonilast Thursday at 4:25 AM

It depends what they mean by some of these: are the state machine race conditions logic races (which Rust won’t trivially solve) or data races? If they are data races, are they the kind of ones that Rust will catch (missing atomics/synchronization) or the ones it won’t (bad atomic orderings, etc.).

It’s also worth noting that Rust doesn’t prevent integer overflow, and it doesn’t panic on it by default in release builds. Instead, the safety model assumes you’ll catch the overflowed number when you use it to index something (a constant source of bugs in unsafe code).

I’m bullish about Rust in the kernel, but it will not solve all of the kinds of race conditions you see in that kind of context.

show 3 replies
RealityVoidlast Thursday at 4:47 PM

Why doesn't it surprise me that the CAN bus driver bugs have the longest average lifetime?

apaprockilast Thursday at 7:20 AM

> Furthermore, the 19-year-old bug case study is a refcounting error

It always surprised me how the top-of-the line analyzers, whether commercial or OSS, never really implemented C-style reference count checking. Maybe someone out there has written something that works well, but I haven’t seen it.