This generic answer from Wikipedia is not very helpful in this context. Zero-shot voice cloning in TTS usually means that data of the target speaker you want the generated speech to sound like does not need to be included in the training data used to train the TTS models. In other words, you can provide an audio sample of the target speaker together with the text to be spoken to generate the audio that sounds like it was spoken by that speaker.
> This generic answer from Wikipedia is not very helpful in this context.
Actually, the general definition fits this context perfectly. In machine learning terms, a specific 'speaker' is simply a 'class.' Therefore, a model generating audio for a speaker it never saw during training is the exact definition of the Zero-Shot Learning problem setup: "a learner observes samples from classes which were not observed during training," as I quoted.
Your explanation just rephrases the very definition you dismissed.
Why wouldn’t that be one-shot voice cloning? The concept of calling it zero shot doesn’t really make sense to me.