You would find things in there that were already close to QM and relativity. The Michelson-Morley experiment was 1887 and Lorentz transformations came along in 1889. The photoelectric effect (which Einstein explained in terms of photons in 1905) was also discovered in 1887. William Clifford (who _died_ in 1889) had notions that foreshadowed general relativity: "Riemann, and more specifically Clifford, conjectured that forces and matter might be local irregularities in the curvature of space, and in this they were strikingly prophetic, though for their pains they were dismissed at the time as visionaries." - Banesh Hoffmann (1973)
Things don't happen all of a sudden, and being able to see all the scientific papers of the era its possible those could have fallen out of the synthesis.
If (as you seem to be suggesting) relativity was effectively lying there on the table waiting for Einstein to just pick it up, how come it blindsided most, if not quite all, of the greatest minds of his generation?
With LLMs the synthesis cycles could happen at a much higher frequency. Decades condensed to weeks or days?
I imagine possible buffers on that conjecture synthesis being epxerimentation and acceptance by the scientific community. AIs can come up with new ideas every day but Nature won't publish those ideas for years.
This would still be valuable even if the LLM only finds out about things that are already in the air.
It’s probably even more of a problem that different areas of scientific development don’t know about each other. LLMs combining results would still not be like they invented something new.
But if they could give us a head start of 20 years on certain developments this would be an awesome result.
Then that experiment is even more interesting, and should be done.
My own prediction is that the LLMs would totally fail at connecting the dots, but a small group of very smart humans can.
Things don't happen all of a sudden, but they also don't happen everywhere. Most people in most parts of the world would never connect the dots. Scientific curiosity is something valuable and fragile, that we just take for granted.
I agree, but it's important to note that QM has no clear formulation until 2025/6, it's like 20 years more of work than SR.
I presume that's what the parent post is trying to get at? Seeing if, given the cutting edge scientific knowledge of the day, the LLM is able to synthesis all it into a workable theory of QM by making the necessary connections and (quantum...) leaps
Standing on the shoulders of giants, as it were