This benchmark is probably as far removed from how applications use task queues as it could possibly be. The headline is "1 million jobs per minute", which is true. However...
- this is achieved by queuing batches of 5000 jobs, so on the queue side this is actually not 1 million TPS, but rather 200 TPS. I've never seen any significant batching of background job creation.
- the dispatch is also batched to a few hundred TPS (5ms ... 2ms).
- acknowledgements are also batched.
So instead of the ~50-100k TPS that you would expect to get to 17k jobs/sec, this is probably performing just a few hundred transactions per second on the SQL side. Correspondingly, if you don't batch everything (job submission, acking; dispatch is reasonable), throughput likely drops to that level, which is much more in line with expectations.
Semantically this benchmark is much closer to queuing and running 200 invocations of a "for i in range(5000)" loop in under a minute, which most would expect virtually any DB to handle (even SQLite).
This isn't my area, but wouldn't this still be quite effective if it automatically grouped and batched those jobs for you? At low throughput levels, it doesn't need giant batches, and could just timeout after a very short time, and submit smaller batches. At high throughput, they would be full batches. Either way, it seems like this would still serve the purpose, wouldn't it?