The main performance difference between Rust, C, and C++ is the level of effort required to achieve it. Differences in level of effort between these languages will vary with both the type of code and the context.
It is an argument about economics. I can write C that is as fast as C++. This requires many times more code that takes longer to write and longer to debug. While the results may be the same, I get far better performance from C++ per unit cost. Budgets of time and money ultimately determine the relative performance of software that actually ships, not the choice of language per se.
I've done parallel C++ and Rust implementations of code. At least for the kind of performance-engineered software I write, the "unit cost of performance" in Rust is much better than C but still worse than C++. These relative costs depend on the kind of software you write.
> I can write C that is as fast as C++
I generally agree with your take, but I don't think C is in the same league as Rust or C++. C has absolutely terrible expressivity, you can't even have proper generic data structures. And something like small string optimization that is in standard C++ is basically impossible in C - it's not an effort question, it's a question of "are you even writing code, or assembly".
> I can write C that is as fast as C++.
Only if ignoring the C++ compile time execution capabilites.