It's not really about infrastructure but yes kernels and firmwares have to do a lot of stuff the compiler can't verify as safe, eg writing to a magic memory address you obtained from the datasheet that enables some feature of the chip. And that will need to happen in unsafe code blocks. I wouldn't call that a problem but it is a reality.
Are you one of the authors? Concerning the "infrastructure": Rust assumes a runtime, the standard library assumes a stack exists, a heap exists, and that main() is called by an OS; in a kernel, none of this is true. And the borrow checker cannot reason about things like e.g. DMA controllers mutating memory the CPU believes it owns, Memory-mapped I/O where a "read" has side effects (violating functional purity), context switches that require saving register state to arbitrary memory locations, or interrupt handlers that violate the call stack model. That's what I mean by "infrastructure". It's essentially the same issue with every programming language to some degree, but for Rust it is relevant to understand that the "safety guarantees" don't apply to all parts of an operating system, even if written in Rust.