Disagree, though in practice it depends on the query, cardinality of the various columns across table, indices, and RDBMS implementation (so, everything).
A simple equijoin with high cardinality and indexed columns will usually be extremely fast. The same join in a 1:M might be fast, or it might result in a massive fanout. In the case of the latter, if your RDBMS uses a clustering index, and if you’ve designed your schemata to exploit this fact (e.g. a table called UserPurchase that has a PK of (user_id, purchase_id)) can still be quite fast.
Aggregations often imply large amounts of data being retrieved, though this is not necessarily true.
Disagree, though in practice it depends on the query, cardinality of the various columns across table, indices, and RDBMS implementation (so, everything).
A simple equijoin with high cardinality and indexed columns will usually be extremely fast. The same join in a 1:M might be fast, or it might result in a massive fanout. In the case of the latter, if your RDBMS uses a clustering index, and if you’ve designed your schemata to exploit this fact (e.g. a table called UserPurchase that has a PK of (user_id, purchase_id)) can still be quite fast.
Aggregations often imply large amounts of data being retrieved, though this is not necessarily true.