In my experience (20+ years with C/C++, and about 4 years with Rust), Rust is significantly less complex than C++, while being similarly capable. The extra syntax that throws off so many C++ devs is almost exclusively about data types and lifetimes, which I find very useful for understanding my own code and others', and which I wish I had in C++.
Great, if you are right everyone is going to be using Rust eventually.
I like the concepts proposed by Rust but do not like fighting with the borrow checker or sprinkling code with box, ref, cell, rc, refcell, etc.
At some point there’s going to be a better designed language that makes these pain point go away.
The real answer should have been a new language that has memory safety without all the extra conceptual changes and orthogonal subsystems that Rust brings. The core value of safety did not need the reinvention of everything else with the accompanying complexity and cognitive load. For example Zig which instead of introducing a new metaprogramkming language, it uses...... Zig - imagine using the same language instead of inventing a new additional language with all the accompanying complexity and cognitive load and problems. Rust is for those who revel in complexity. And traits - traits and extra complexity not needed for safety. And result and option and move by dedfault - none of these things were needed but they all add up to more complexity and unfamiliarity and cognitive load. And when you add it all together and intertwine it you end up with something so unfamiliar that it no longer looks like "ordinary programming" it looks like something from the Cambrian period.
C% agree.
Rust is better than C++.
Some of this is just knowing from experience, by the time C++ programmers knew they wanted the destructive move assignment semantic at the turn of the century they already had large codebases which relied on C++ copy assignment, so, too bad. It took a significant extra effort to land C++ 11 move semantics, which are still less useful but also have worse ergonomics. Whereas Rust knew it wanted the destructive move so, that's just how everything works in Rust.
But there are a bunch of unforced errors in C++ design beyond that. Default implicit conversion is a choice and a mistake. Multiple inheritance is a mistake, Stroustrup even says he did it because it was easy, which is exactly the same cause as Hoare's NULL. Choosing "All correct programs compile" (the other option was "No incorrect programs compile", you can't have both, see Henry Rice's PhD thesis) was a mistake. My favourite bad default in C++ is atomic memory ordering. The nasty trick here was that picking a default was the mistake, it's not that they picked the wrong one but that they picked a default at all. C++ programmers end up writing code which doesn't specify the ordering even though the ordering was their only important decision.